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The ghost of nestedness in ecological networks
Phillip P.A. Staniczenko1, Jason C. Kopp1 & Stefano Allesina1,2

Ecologists are fascinated by the prevalence of nestedness in biogeographic and community

data, where it is thought to promote biodiversity in mutualistic systems. Traditionally, nest-

edness has been treated in a binary sense: species and their interactions are either present or

absent, neglecting information on abundances and interaction frequencies. Extending

nestedness to quantitative data facilitates the study of species preferences, and we propose a

new detection method that follows from a basic property of bipartite networks: large domi-

nant eigenvalues are associated with highly nested configurations. We show that complex

ecological networks are binary nested, but quantitative preferences are non-nested, indicating

limited consumer overlap of favoured resources. The spectral graph approach provides a

formal link to local dynamical stability analysis, where we demonstrate that nested mutua-

listic structures are minimally stable. We conclude that, within the binary constraint of

interaction plausibility, species preferences are partitioned to avoid competition, thereby

benefiting system-wide resource allocation.
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N
estedness has been studied in a wide range of ecological
systems. The concept was first proposed in the early
twentieth century but only became popular among

ecologists with its application to the biogeographic pattern of
species occurrence in islands and other fragmented landscapes1,2.
More recently, nestedness in species interaction networks has
received significant attention3–7, where it has been suggested that
a nested pattern of interactions leads to greater biodiversity in
mutualistic systems such as plant–pollinator networks8,9. In a
nested bipartite network or graph, interactions are organized such
that specialists (for example, pollinators that visit few plants)
interact with subsets of the species with whom generalists (for
example, pollinators that visit many plants) interact. A nested
structure corresponds to a systematic arrangement of non-zero
entries in the binary matrix used to represent a network, and
existing detection methods are based on distinguishing the nested
pattern from other possible arrangements of matrix elements10,11.
However, these methods are often computationally expensive for
large matrices and are not applicable to quantitative networks
(binary metrics extended to work with quantitative data, such as
WNODF12, do not make full use of the available quantitative
information).

Quantitative networks contain the number or frequency of
pairwise interactions between species, and we show how
empirical data can be rescaled to permit investigation of feeding
or visitation preferences in addition to the basic presence–absence
structure. If preferences are quantitatively nested, then the most
generalist resources are preferred by all consumers—most
strongly by generalist consumers, closely followed by specialist
consumers—and specialist resources are neglected. We formally
extend the definition of nestedness to include quantitative
networks and propose a new and robust detection method based
on the eigenvalue spectrum of a graph’s adjacency matrix. The
spectral properties of perfectly nested graphs were first discussed
in the mathematical literature, where they are known as double-
nested graphs (DNGs)13 or chain graphs14, and we show that
large dominant eigenvalues are associated with highly nested
structures (for both binary and quantitative matrices). A spectral
method is advantageous because the eigenvalues of a matrix can
be computed extremely quickly—even for large matrices—and
results are invariant to matrix permutation15. Of 52 bipartite
ecological networks from the literature, including plant–
pollinator, parasitoid–host, and seed dispersal types, 51 (98%)
were binary nested; however, only 3 (6%) had preference
structures that were quantitatively nested. These results agree
with our analysis of the dynamical (local) stability of nested
graphs, where we demonstrate that perfectly nested
configurations are minimally stable. Within the restriction of
interaction plausibility—whether an interaction is forbidden or
not, and identifiable with a binary structure16—species
preferences are partitioned to avoid competition. Thus,
ecological systems are organized such that niches are exploited
and the efficient use of available resources is promoted.

Results
Nestedness and bipartite graphs. Before explicitly considering
ecological systems and empirical data, we begin by formally
defining nestedness for both binary and quantitative bipartite
networks, and present a general detection method that follows
naturally from the matrix properties of nested graphs.

A bipartite network or graph contains S nodes (species) that
can be partitioned into two disjoint sets, A (animals in pollination
networks) and P (plants), such that each of the E undirected edges
(an animal–plant interaction) connects a node in the set A with
another in the set P. For the binary case, the adjacency matrix A

is a square matrix in which Aij¼ 1 if i and j are connected and is
0 otherwise; for quantitative networks Aij can take positive non-
zero values other than 1. The set of eigenvalues is an invariant
property of a matrix (they do not change if rows and columns are
permuted). Because A is a symmetric matrix, all of its eigenvalues
are real, and because the graph is bipartite, the eigenvalues are
distributed symmetrically about 0. The largest eigenvalue of A,
the dominant eigenvalue, is known as its spectral radius rðAÞ,
and for binary matrices its value is bounded from above byffiffiffiffiffiffiffiffiffiffiffiffi
j E j

p
(refs 13,15).

Since matrix A is symmetric and the graph bipartite, we need
draw only the |P|� |A| incidence matrix B (for example, Fig. 1).
Nestedness can be defined as a property of the matrix B. If B is a
perfectly nested binary matrix then there exists a permutation of
rows and columns such that the set of edges in each row i
contains the edges in row iþ 1, while the set of edges in each
column j contains those in column jþ 1. More formally, the rows
and columns of B can be sorted (with B1;j 4 0 8j and Bi;1 4 0 8i)
such that Bi;jpminðBi;j� 1; Bi� 1;jÞ. This definition of perfect
nestedness extends to quantitative as well as binary matrices.
Matrices A, C, D, I, K and N in Fig. 1 are perfectly nested, as is
matrix C in Fig. 2, while the others are not. An example of perfect
binary nestedness and the corresponding DNG notation used in
graph theory is given in Supplementary Fig. S1.

In the mathematical literature regarding DNGs, Bell et al.17

provide a theorem that states: among all the connected bipartite
graphs with |S| nodes and |E| edges, the one yielding the largest
spectral radius rðAÞ is a perfectly nested graph. It was
subsequently proved that the same holds if the number of
nodes in each set P and A are fixed18, rather than choosing
among all possible sizes such that |P|þ |A|¼ |S| as in the original
theorem. We confirm numerically that among all the bipartite
graphs with |P| plants, |A| animals and |E| edges, the
configuration leading to the largest spectral radius is a
perfectly nested graph, with all other perfectly nested graphs
having spectral radii close to this maximum value (Fig. 1 and
Supplementary Figs S2–S4). This finding extends to quantitative
matrices and quantitative nestedness (Fig. 2). The right tail of the
spectral radius distribution contains either perfectly nested
graphs—of which there can be many configurations
(see Supplementary Methods)—or graphs that are very close to
being perfectly nested, while the left tail contains graphs that are
far from being perfectly nested.

The spectral radius therefore represents a natural scale for
nestedness, with larger rðAÞ obtained for more nested
matrices with the same size and number of edges, and we have
developed a set of statistical tests to determine the significance
of nestedness for matrices that are not necessarily perfectly
nested (see Methods and Supplementary Fig. S5). Matrices that
are significantly non-nested in their binary form can become
significantly nested when a sufficiently strong nested quantitative
pattern is overlaid. This suggests that the quantitative structure of
a network can dominate its underlying binary pattern
(Supplementary Fig. S6).

The eigenvector associated with the spectral radius, besides
being of interest in its own right19, provides a natural way of
ordering nodes that best illustrates matrix nestedness. This
follows from the standard eigenvalue equation A~x¼ l~x: Because
any eigenvector ~x multiplied by the original adjacency matrix A
yields a vector parallel to the original adjacency matrix,
the spectral radius (dominant eigenvalue) represents a scale
factor l for the dominant eigenvector. Conversely, if the spectral
radius is understood to be a measure of nestedness, then the
entries of the dominant eigenvector (of size the number
of species) provide a way of ordering the species with respect to
nestedness.
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Nestedness and ecological networks. We now turn our attention
to the specific case of ecological systems. In general, interactions
among species can be described by a set of dynamical equations:
dxi/dt¼ f ðxiÞþ gðxi; ~xÞ, where xi is the density of a given species
i, f(xi) describes the effect of its density on population growth and
gðxi; ~xÞ is the contribution to growth from interactions with
other species in the system20–22. We can divide the interaction
term between two species, gðxi; ~xÞ, into two parts: the frequency
of interactions gi,jxixj, and the effect of each interaction hðxi; ~xÞ,
and so gðxi; ~xÞ¼

P
j gi;jxixjhðxi; ~xÞ. Typically, hðxi; ~xÞ takes the

form of a functional response that captures the effect of an
interaction between i and all of its partners ~x (for example,
Holling’s Type II23). For each pair of species, xixj is a mass action
term, and gi,j indicates the relative frequency or probability of
interaction compared to mass action. Under the mass action
hypothesis, the basic affinity between two species—the expected
magnitude of encounters—is directly proportional to the product
of their densities, and factors such as the spatial layout of the
environment, consumer search efficiency or handling time are not
accounted for. These additional factors are aggregated in gi,j. For
each plausible (gi,ja0) interaction, gi,j can be thought of as a
preference parameter: if gi,j41 then the interaction is more likely
to occur than expected and is therefore favoured, gi,jo1 indicates
that the interaction is less favourable and gi,j¼ 1 is exactly the
expectation based on mass action. When we record ecological
data such as the number of pollinator–plant visits—data that
can be organized in the form of a quantitative incidence matrix
B—we implicitly record Bi; j¼ gi; jxixj. So in practice, empirical
data must be adjusted for mass action (xixj) to isolate species
preference gi,j.

We are particularly interested in whether the pattern of
nestedness observed in binary bipartite ecological networks4 is
maintained in the quantitative preference structure represented

by the g-matrix. In a nested quantitative network, generalist–
generalist species interactions are strongest, followed by
generalist–specialist interactions, whereas specialist–specialist
interactions are much weaker (and may be absent altogether).

Effective abundance. Before applying the tests for nestedness to
empirical data, we first remove the effect of mass action in order
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Figure 1 | Binary nestedness and eigenvalues. Spectral radius (r, largest eigenvalue) distribution for all connected graphs with |P|¼6, |A|¼4 and |E|¼ 17.

There are 346,104 possible incidence matrices with this parameter combination, and of these, 339,192 are connected (shown in the figure). Among the

connected graphs, 7,560 are perfectly nested (coloured orange), and have higher spectral radii than most other matrices (all perfectly nested matrices are

contained in the top 4.59% of the distribution). The maximum spectral radius is found for matrix N, and all matrices with spectral radius greater than that

of matrix A are either perfectly nested or very close to being perfectly nested (bottom series): matrices B, E, F, G, H, J, L and M would become perfectly

nested if we were to move just one edge. Matrices with the lowest spectral radii depart most severely from perfect nestedness (top series).
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Figure 2 | Quantitative nestedness and eigenvalues. Spectral radius

(r, largest eigenvalue) distribution for a perfectly nested binary structure

(matrix A from Fig. 1) with randomized quantitative overlay. A single set of

|E|¼ 17 coefficient values are shuffled within the binary structure 10,000

times, and each time the spectral radius is computed. High spectral radius

is associated with a highly nested quantitative configuration (for example,

matrix C, where darker colours indicate higher relative element values),

medium spectral radius with a non-specific quantitative configuration

(for example, matrix B) and low spectral radius with an anti-nested

quantitative configuration (for example, matrix A). Thus, the positive

relationship between spectral radius and nestedness found for binary

matrices extends to quantitative matrices.
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to isolate species preferences. As interaction data are rarely
accompanied by independent measures of species density, we use
a method based on solving overdetermined sets of equations24 to
infer effective species abundances from quantitative interaction
networks. These effective abundances should not be interpreted
as field-measurable equivalents; rather, they are best-fit
abundances under the mass action hypothesis. In some regards
their use is more appropriate than the use of raw abundance data
because they incorporate confounding factors such as life-cycle
turnover, partner co-occurrence overlap and unevenness in
spatial distribution.

To obtain effective abundances, recall that we can write
empirical count data Bi;j¼ gi;jxixj. If no interaction is recorded,
Bi; j¼ 0 and we set the estimate for species preference ĝi; j¼ 0. For
the remaining set of recorded counts with Bi; j 4 0, we take
logarithms logBi; j¼ log gi; jþ log xiþ log xj and perform a linear
regression. However, rather than regressing ‘y’ against ‘x’ as is
commonly done, we do the opposite such that we infer the log-
transformed effective abundances x̂i and x̂j from the log-
transformed counts (see Supplementary Methods). The
preference g-term then represents errors or residuals, and as log
gi,j’s are minimized during regression the estimated ĝi;j’s are
constrained to be as close to 1 as possible. In this way, binary
matrices can be seen as a special case in which interaction
magnitude is completely explained by mass action, and, as
required, preferences are scaled relative to mass action—based on
the inferred effective abundances—with ĝi; j¼Bi; j/ðx̂ix̂jÞ. This
quantitative ĝ-matrix can be assessed for nested patterns.

Binary and quantitative nestedness of empirical networks. We
tested 52 bipartite empirical networks for binary and quantitative
nestedness (Table 1 and Supplementary Table S1). For each
network and test, we computed the probability p that a randomly
constructed matrix A0, which preserves some of the properties of
the empirical adjacency matrix A, is associated with spectral
radius rðA0ÞXrðAÞ(see Methods). All but one of the networks
were binary nested (defined as having Po0.05), in agreement

with earlier studies4. However, nestedness was not observed in
species preferences: for the vast majority of networks, the
quantitative structure of the ĝ-matrix was indistinguishable
from random configurations, and in some cases, anti-nestedness
(defined as having P40.95) became apparent (Table 1, Fig. 3).
The lack of nestedness in the dominant quantitative structure of
empirical networks is consistent with our mathematical treatment
of the local stability of nested structures. Although local stability
analysis captures only one aspect of ecological system dynamics,
its mathematical tractability provides a good starting point for
assessing the dynamical consequences of network structure25.

Local stability analysis. Local stability analysis is concerned
with how a dynamical system resting at equilibrium responds to
perturbations. If an equilibrium point is stable, then the
system returns to that point following small perturbations. For
unstable equilibrium points, small perturbations will move the
system away from the original resting state. Mathematically,
the stability of an equilibrium point is completely defined by the
sign of the real parts of the eigenvalues of the so-called com-
munity matrix M25–27 (these eigenvalues are distinct from the
adjacency matrix eigenvalues we have been considering so far). If
all of the signs are negative then the equilibrium point is stable.
Contemporary work has shown that nested mutualistic networks
are less likely to be stable than their random counterparts25. We
now demonstrate that a nested structure within M minimizes
local stability.

A community matrix can be written as the sum of a matrix
with zeros on its diagonal, M0, and a corresponding diagonal
matrix, �D, that is, M¼M0 �D. For very large systems, the
spectral radius of M is rðMÞ � rðM0Þ � �D, where ��D is the
average value of the diagonal25. Stability is therefore achieved
whenever rðM0Þo �D. Analogous to arranging coefficients in an
adjacency or incidence matrix (as we did above), among all
possible ways of arranging the coefficients of M0 the configuration
yielding the largest spectral radius is perfect nestedness (binary or
quantitative). (Note that the community matrix is often
considered non-symmetric, that is, the effect of an animal on a
plant is often assumed to be different from that of the plant on
the animal. However, the maximum spectral radius is obtained
for symmetric matrices.) Hence, for a given diagonal and set of
coefficients, nestedness of the community matrix minimizes local
stability.

This is seemingly at odds with the prevailing view that
nestedness promotes the persistence of species in mutualistic
systems8,9 (although recent work has begun to question this
proposition28). As an approach to assessing system robustness,

Table 1 | Nestedness of ecological networks using
quantitative null model (iv) (maintain binary structure
and shuffle non-zero coefficients, see Methods).

Structure Nested No pattern Anti-nested Total

Binary 51 (98%) 1 (2%) 0 (0%) 52

Preference 3 (6%) 45 (86%) 4 (8%) 52

Figure 3 | Empirical nestedness. Three versions of a seed-dispersal mutualistic network with |P|¼ 19, |A|¼ 29 and |E|¼ 211 (web 37 in Supplementary

Table S1). In each incidence matrix, darker colours indicate higher relative element values. Applying tests for nestedness based on the spectral radius (see

Methods) with 10,000 null model randomizations, we find: (a) the binary structure is nested, Po0.001 for the binary null model (i) and (ii); (b) the

empirical count structure is quantitatively nested, Po0.05 for the quantitative null model (iv); and (c) the quantitative preference structure (the ĝ-matrix)

is anti-nested, P40.95 for the quantitative null model (iv). Therefore, within the restriction of interaction plausibility (matrix a), and after rescaling the raw

data (matrix b) according to mass action, species preferences are found to be distributed in an anti-nested manner (matrix c).
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persistence encompasses local stability analysis—in many models
of mutualism, local stability guarantees species persistence but
locally unstable states may yet display persistence. Repeating
precisely the analysis of Thébault and Fontaine9, we show that
many dynamical models inadvertently build in trivial local
stability and hence guarantee persistence: the diagonal elements
of the community matrix are always large enough to compensate
for the potential destabilizing effect of nestedness, thereby
precluding nestedness—or, indeed, any other configuration of
interactions—from having a significant contribution to local
stability or persistence in such models (see Supplementary
Methods and Supplementary Fig. S7). The claimed positive
relationship between nestedness and persistence actually reflects a
trivial positive relationship between connectance and persistence
in obligate mutualistic systems—trivial because species without
partners immediately go extinct (a feature not considered by
Thébault and Fontaine9), and species with initial densities close to
zero will quickly go extinct unless they have sufficient (binary)
mutualistic partners to ‘pull’ them to larger densities, after which
they are guaranteed to persist29.

Discussion
Traditionally, nestedness has been associated with the plausibility
of interaction: if the length of a pollinator’s proboscis is sufficient
to obtain nectar from plants with deep corolla tubes, then it can
also obtain nectar from species with shallower tubes, otherwise its
visitation partners are restricted—for a community with many
pollinator species, each with a different proboscis length, a nested
binary interaction pattern emerges. Quantitative data allow us to
investigate whether pollinators interact with particular plants
more or less frequently than would be expected through random
encounter, and whether they do so in any systematic fashion.
With a nested preference structure, almost all consumers
disproportionately interact with a common subset of the most
generalist resources, while ignoring more specialist resources.

While we found empirical networks to be binary nested, after
adjusting for uneven species abundances according to mass
action, their quantitative preference structures were distinctly
non-nested. The need to account for abundances has been
highlighted using synthetic networks, where heterogeneous
abundance distributions combined with random species associa-
tions was sufficient to produce significantly nested binary
patterns, leading to the conclusion that complex trait-based
models were not necessary to explain nestedness30. Our results
extend this argument to quantitative networks: The vast majority
of empirical networks analysed had quantitative preference
structures indistinguishable from random graphs, meaning that
no systematic process is required to promote or constrain
observed levels of nestedness.

The lack of quantitative nestedness also finds support from
mathematical analysis, where we showed that nested configura-
tions of mutualistic interactions are minimally stable from the
perspective of local stability analysis. How other types of
interaction—such as antagonistic or facilitative pairings8—
formally combine with mutualism to determine the overall
stability and persistence of a network requires further work. At
the community level, compared to quantitatively nested
preference structures, non-nested structures suggest that species
preferences are partitioned to avoid competition. Species rarely
forgo abundant and accessible resources; rather, less abundant
resources are disproportionately favoured by different sets of
consumers—niches naturally arise. It would be instructive to see
whether this kind of niche partitioning is also apparent at the
level of individuals within a single-species population31.

Much like the solar spectrum of light can be used to infer
the constituent elements of our sun, we used a spectral

approach—spectrum derived from the Latin for ghost—to detect
nestedness in complex ecological networks. And like a ghost,
nestedness, which was strongly apparent in binary structures,
disappeared when quantitative preference structures were ana-
lysed. As the size of ecological data grows, the advantages of a
spectral approach will become more pronounced; in addition to
the dominant eigenvalue and eigenvector of a network’s
adjacency matrix, considered here, the relationship between
other spectral properties and ecological phenomena warrants
further investigation. Our findings suggest that nestedness may
not be the preeminent structure we once thought it was, but
spectral analysis may further elucidate which structural features
influence the function of large complex ecological networks.

Methods
Tests for nestedness based on the spectral radius. We showed that perfectly
nested binary and quantitative matrices are associated with large spectral radius.
Already, we have a strong test for nestedness: compute the spectral radius of an
empirical matrix, and, if it is greater than the smallest spectral radius of a corre-
sponding perfectly nested matrix, then the empirical matrix is almost guaranteed to
be nested. However, in general, empirical data are incompatible with perfect
nestedness (in many ecological networks, no super-generalists interacting with
all of the species in the other class are observed). Here we describe four statistical
tests for (not necessarily perfect) nestedness that are more applicable to real-world
data sets.

For each test, we compute the probability p that a randomly constructed inci-
dence matrix B0 has spectral radius rðA0ÞXrðAÞ, where A and A0 are the adja-
cency matrices of B and B0, respectively. For both binary and quantitative matrices,
we define three null models for constructing B0 : (i) preserve |P|, |A| and place |E|
edges at random within the matrix; (ii) as in (i), but accept only connected
matrices; and (iii) as in (ii), but conserve the degree distribution (the row and
column sums of B). As measures of nestedness can be very sensitive to matrix size,
fill and configuration10,11, we used null model implementations that preserve |P|,
|A| and |E| (null models (i) and (ii)) and degree distribution (iii) exactly, and not
just their expected values.

For quantitative matrices only, we introduce a fourth null model: (iv) preserve
|P|, |A| and |E|, and shuffle the coefficient values of B but not their positions. That
is, maintain the binary structure of the matrix (where the non-zero entries are
located) but randomize which coefficient values occupy which non-zero positions.
Using this null model, the P-value is to equal to 1 when all the coefficients have
the same value (for example, a binary matrix).

In all tests, for all but the smallest of networks, Po0.05 is a suitable general
significance level for nestedness, with P40.95 indicating anti-nestedness. We
encourage the use of null model (ii) for determining the nestedness of the binary
network structure due to some important limitations of null models (i) and (iii),
and null model (iv) for determining the nestedness of species preferences because
it is the only null model that isolates quantitative structure (see Supplementary
Methods).

Condition for finding connected graphs. Null models (ii) and (iii) require
connected matrices. To ensure that there is a reasonable probability of finding
randomized matrices that are connected, we calculate the percolation point for
random bipartite graphs.

A classical result for Erdös–Rényi random graphs is the percolation point of
connected graphs. For n nodes with a probability of connection C¼ |E|/(|P| � |A|),
graphs in which C4log(n)/n are almost surely connected, while those in which
Colog(n)/n are almost surely disconnected (for the limit n-N).

Without loss of generality, we will assume |P|X|A|. Saltykov32 showed that in
bipartite graphs the number of isolated nodes (that is, those that are not part of the
giant component) is Poisson distributed. Using this result, Blasiak and Durrett33

provided the following extension: for a random bipartite graph with |P| rows,
|A| columns and |E| edges, whenever |E|4|P| log(|P|þ |A|), the graph is
almost surely connected (again, for the limit n-N).

From this, one can see that the probability of finding a connected graph
approaches 1 whenever the probability of connection C4|P| log(|P|þ |A|)/
(|P| � |A|)¼ log(|P|þ |A|)/|A|. For matrices with C around this threshold, it can take
a long time to find connected matrices through random sampling.
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