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Appendix S1. Example R code for solving a Bayesian network.67

This code is adapted from Eklöf et al. 2013, with thanks to the authors.68

Note that some dependencies of the required R package “gRain” are no longer hosted on69

CRAN. However, these dependencies can be obtained from the “bioconductor” package.70

To install the dependencies, in R, type:71

source(‘‘http://bioconductor.org/biocLite.R’’)72

biocLite()73

biocLite(pkgs=c(‘‘RBGL’’))74

References75

Eklöf, A., Tang, S. & Allesina, S. (2013). Secondary extinctions in food webs: a Bayesian76

network approach. Methods Ecol. Evol., 4, 760–770.77

# Example R code for solving a Bayesian network78

# Consider the Bayesian network with three species:79

# A -> C <-/- B80

# where the presence of C is positively affected by A and negatively by B81

# At a particular location, assume the species have prior probabilities of presence82

# A: 0.7; B: 0.2; and C: 0.483

# Load the required R package for solving Bayesian networks84

require(gRain)85

# Define the state table (conditional probability table) for A86

A <- cptable(∼A, values=c(0.7,0.3), levels=c(‘present’, ‘absent’))87

# Define the state table (conditional probability table) for B88

B <- cptable(∼B, values=c(0.2,0.8), levels=c(‘present’, ‘absent’))89
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# Define the state table (conditional probability table) for C90

# The order is (A=present,B=present) (absent,present) (present,absent) (absent,absent)91

C <- cptable(∼C|A+B, values=c(0.4,0.6, 0,1, 0.8,0.2, 0.4,0.6), levels=c(‘present’,92

‘absent’))93

# Compile state tables (conditional probability tables)94

plist <- compileCPT(list(A, B, C))95

# Build the Bayesian network96

BN <- grain(plist)97

# Solve the Bayesian network98

posteriors <- querygrain(BN)99

# Display results100

print(posteriors)101

# The posteriors should be 0.7, 0.2 and 0.6 for species A, B and C, respectively102

# (as explained in Box 1 in the main text).103
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Appendix S2. Additional methods and results for comparing predictions of future impacts104

from climate change made with and without biotic interactions.105

Formally, we quantified the change in habitat suitability for focal species i = i∗ as106

RHS
i=i∗ =

x=X∑
x=1

π2050
x,i=i∗ −

x=X∑
x=1

π2010
x,i=i∗

x=X∑
x=1

π2010
x,i=i∗

(S1)

for models without biotic interactions, and as107

R̃HS
i=i∗ =

x=X∑
x=1

p2050x,i=i∗ −
x=X∑
x=1

p2010x,i=i∗

x=X∑
x=1

p2010x,i=i∗

(S2)

for models with biotic interactions, where X is the total number of grid cells in the western108

USA extent. When habitat suitability values were thresholded (to the largest value that109

resulted in all presence records being included in the geographical range for 2010 and to the110

maxSSS value for 2010 data), we calculated changes in geographical range as111

RThreshold
i=i∗ =

Area2050
i=i∗ − Area2010

i=i∗

Area2010
i=i∗

(S3)

for models without biotic interactions, and as112

R̃Threshold
i=i∗ =

Ãrea
2050

i=i∗ − Ãrea
2010

i=i∗

Ãrea
2010

i=i∗

(S4)
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for models with biotic interactions, where AreaYear
i=i∗ is the sum of grid cells classed as “present”113

across the western USA extent using priors, and similarly with Ãrea
Year

i=i∗ for posteriors. Al-114

though modelling dispersal distances for each species would result in more realistic predic-115

tions (Urban et al. 2013), to demonstrate the methodology for integrating biotic interactions116

we here repeated the calculations both with full dispersal and without any dispersal.117

Larger positive values of RHS
i=i∗ , R̃HS

i=i∗ , RThreshold
i=i∗ and R̃Threshold

i=i∗ are suggestive of lower118

extinction risk for the focal species because average habitat suitability or geographical range119

is predicted to increase between 2010 and 2050; conversely, larger negative values are sugges-120

tive of higher extinction risk1. We determined the effect of biotic interactions on predicted121

changes between 2010 and 2050 by comparing the same measure using priors and posteriors.122

For example, if ∆RHS = R̃HS
i=i∗ − RHS

i=i∗ < 0 then the model with biotic interactions predicts123

either a smaller increase or larger decrease in average habitat suitability than the comparable124

model without biotic interactions. But if ∆RHS = R̃HS
i=i∗ − RHS

i=i∗ > 0 then the model with125

biotic interactions predicts either a larger increase or smaller decrease in average habitat126

suitability than the comparable model without biotic interactions. A similar reasoning holds127

for the threshold-based measures: if ∆RThreshold = R̃Threshold
i=i∗ −RThreshold

i=i∗ > 0 then the model128

with biotic interactions predicts either a larger increase or smaller decrease in the species129

range (area) than the comparable model without biotic interactions.130

When considering the change in average habitat suitability between 2010 and 2050,131

1We used proportional changes in average habitat suitability and geographical range rather than absolute
changes to minimise any bias due to systematic differences in values between priors and posteriors. Results
were qualitatively similar with both approaches except for changes in average habitat suitability, in which
case, absolute changes were consistently larger with posteriors than priors due to larger predicted values in
2010, see Appendix S3.
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results for priors (RHS
i=i∗ , Eqn S1) were typically lower than for posteriors (R̃HS

i=i∗ , Eqn S2).132

Across the 14 focal species, ∆RHS > 0 for 9 species (10.1±18.3 percentage points, mean± SD;133

min: 0.6; max: 58.6) and ∆RHS < 0 for 4 species (11.2 ± 7.8 percentage points; min: 4.5;134

max: 22.0). (Recall that species ID 1 had no conditional dependencies in the BN, so there135

cannot be any difference between R̃HS
i=i∗ and RHS

i=i∗ for this species.) There was qualitative136

agreement with results for the inclusion threshold-based measure (Eqns S3 and S4). With137

dispersal, ∆RThreshold > 0 for 8 species (5.3 ± 5.1 percentage points; min: 1.6; max: 16.5)138

and ∆RThreshold < 0 for 5 species (2.1± 2.2 percentage points; min: 0.2; max: 4.7). Without139

dispersal, ∆RThreshold > 0 for 9 species (5.4 ± 5.9 percentage points; min: 1.1; max: 20.2)140

and ∆RThreshold < 0 for 4 species (0.6± 0.3 percentage points; min: 0.4; max: 1.1). Results141

were less clear-cut using the maxSSS threshold. With dispersal, ∆RThreshold > 0 for 6142

species (6.2± 6.6 percentage points; min: 0.9; max: 18.2) and ∆RThreshold < 0 for 7 species143

(11.0± 12.5 percentage points; min: 1.5; max: 34.9). Without dispersal, ∆RThreshold > 0 for144

6 species (6.2±6.3 percentage points; min: 0.6; max: 16.6) and ∆RThreshold < 0 for 7 species145

(4.2± 4.5 percentage points; min: 0.5; max: 13.6).146

Changes in average habitat suitability and geographical range between 2010 and 2050 for147

the 14 focal species are in Table S3, and calculations using those values are in Appendix S3.148

References149

Urban, M.C., Zarnetske, P.L. & Skelly, D.K. (2013). Moving forward: dispersal and species150

interactions determine biotic responses to climate change. Annals of the New York151

Academy of Sciences, 1297, 44–60.152
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Appendix S3. Excel file with calculations of changes in average habitat suitability for153

the 14 focal species, and corresponding changes in geographical range using the inclusion154

threshold and maxSSS threshold.155

File includes results for both proportional and absolute change in values, and is hosted at:156

ELEstaniczenkoSA3.xlsx157
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Appendix S4. An extended discussion of validating Bayesian networks.158

Specifying Bayesian networks (BNs) based on community-level interaction data or inferred159

from macroecological occurrence data are two very different but complementary approaches160

that can be represented by a Venn diagram (see image, below). With either approach, the161

process of validation involves the intersection of the Venn diagram.162

The Venn diagram contains two circles: (i) the set of biotic interactions defined from163

community-level data and (ii) the set of conditional dependencies inferred from macroecolog-164

ical data. In the main paper, the conditional dependences that we discussed as “validated”165

biotic interactions are contained in the intersection of the two circles. At the intersection,166

for the California grassland case study we identified nine negative and six positive condi-167

tional dependences that matched expectations based on community-level knowledge. The168

remainder of the interactions in circle (ii) comprise three negative conditional dependencies169

and thirty-four positive conditional dependencies, thirty-two of which could be explained by170

shared habitat suitability. The remainder of the interactions in circle (i) represent the set of171

biotic interactions that we did not but could have included in a BN based on community-172

level data. However, with our given macroecological occurrence data, these additional biotic173

interactions would likely have no effect on AUC scores or may even have a negative effect174

on AUC scores (due to the over-simplistic OR model we used, or inadequate number of175

occurrence records).176

Through the Venn diagram, one can see that the correspondence between biotic inter-177

actions and conditional dependencies in a BN is centred on the process of validation. On178
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the one hand, community-level data can be used to define conditional dependencies in a BN,179

then their effect on model performance can be quantified using macroecological data. On180

the other hand, macroecological data can be used to infer conditional dependencies in a BN,181

then these inferred relationships can be contextualised using community-level knowledge. In182

practice, alternating between the two approaches is likely to be the most informative and183

powerful strategy. Community-level data can improve predictions of macroecological mod-184

els; and macroecological data can inform understanding of community-level patterns and185

processes.186

187

Venn diagram of the set of biotic interactions included in a Bayesian network based on188

community-level data and the set of conditional dependencies in a Bayesian network189

inferred from macroecological data.190
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Appendix S5. An extended discussion of penalising for model complexity.191

In the main paper, we showed that consistent improvements in AUC were possible by mod-192

elling biotic interactions using Bayesian networks (BNs). Using macroecological occurrence193

data and an optimisation process, the BN we obtained for species from a California grassland194

community included a total of 52 conditional dependencies (12 negative and 40 positive).195

Nine negative and six positive conditional dependencies matched expected community-level196

interactions, thirty-two agreed with shared habitat suitability expectations, two negative197

and two positive contradicted community-level understanding, and there was no expectation198

for one conditional dependency.199

If one is of the opinion that biotic interactions are fundamentally relevant for determin-200

ing species ranges, then biotic interactions should be included in any model that attempts201

to predict species ranges. Given this viewpoint, any improvement in model performance due202

to including biotic interactions is beneficial, but also expected. Importantly, the approach203

we describe provides a way of quantifying whether or not it is worth including particular204

biotic interactions or sets of biotic interactions in species distribution models (for a given205

macroecological data set).206

When BNs are inferred from macroecological occurrence data using an optimisation207

procedure, model performance is almost guaranteed to improve. This is why it is important208

to validate the biological relevance of inferred conditional dependencies using community-209

level knowledge.210

Complexity penalisation is an important aspect of model selection, which is the process211
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of comparing models with potentially different numbers of parameters in order to find an212

overall best model. In general, the more complex a model—in terms of free parameters—the213

more likely it is to explain a given data set well. This inherent flexibility is the motivation214

behind penalising the raw performance of models by their complexity.215

Accounting for BN model complexity is not straightforward. Consider the popular216

Akaike information criterion (AIC; Burnham & Anderson 2002), which penalises model like-217

lihoods based on the number of parameters in a model. (Note that likelihood-based measures218

of model performance would typically require having actual probabilities of occurrence rather219

than habitat suitability values.) With BNs, it is not clear how parameters should be counted220

and used in AIC for a given BN. For example, the number of edges (conditional dependen-221

cies) is not appropriate because different BNs with the same number of edges but different222

topologies can have different numbers of possible states and therefore numbers of proba-223

bilities in state tables. The number of probabilities across all state tables is also not an224

appropriate number for penalising model complexity because all states are not equally likely.225

One potentially useful approach to model selection comes from Information Theory226

and is called Normalized Maximum Likelihood (NML; Myung et al. 2006; Grünwald 2007).227

NML, like AIC, attempts to balance goodness-of-fit with model complexity. However, it228

does so using a very different approach, one that does not weight all model parameters by229

the same amount. This is important, because, as described above, the number of edges or230

distinct probabilities across state tables are not, in and of themselves, a good option for231

complexity penalisation.232
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NML quantifies how well a BN explains a particular data set compared to how well it233

explains all possible data sets of comparable size. An overly complex BN, often with many234

distinct probabilities, will fit many data sets well because of its flexibility, resulting in a small235

value for NML. An overly simple BN, such as one with no conditional dependencies, will fit236

all data sets by a similar amount, also resulting in a small value for NML. By contrast, a237

BN that fits only the observed data set well and all other data sets poorly would results in238

a large value for NML, and would be a good candidate for best model.239

Although a model selection approach based on NML has been proposed for stochastic240

block models (Staniczenko et al. 2014)—which can be thought of as BNs without any241

conditional dependencies, i.e., all random variables are independent of one another—the242

added problem of accounting for conditional dependencies in BNs requires careful thought243

and further work. Nevertheless, NML and related information theoretic methods represent244

a promising general approach for model selection involving SDMs and BNs.245

References246

Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A247

Practical Information-Theoretic Approach. Springer, Second Edition.248

Grünwald, P.D. (2007). The Minimum Description Length Principle. MIT Press.249

Myung, J.I., Navarro, D.J. & Pitt, M.A. (2006). Model selection by normalized maximum250

likelihood. J. Math. Psychol., 50, 167–179.251

Staniczenko, P.P.A., Smith, M.J. & Allesina, S. (2014). Selecting food web models using252

normalized maximum likelihood. Methods Ecol. Evol., 5, 551–562.253
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Table S1: List of species and numbers of presence records in the western USA extent.
Highlighted rows are the 14 focal species with the most presence records.

Species ID Name Family Functional group Presence records

1 Achillea millefolium Asteraceae Perennial forb 94

2 Aira caryophyllea Poaceae Annual grass 45

3 Aphanes occidentalis Rosaceae Winter forb 18

4 Avena barbata Poaceae Annual grass 12

5 Briza minor Poaceae Annual grass 25

6 Brodiaea elegans Asparagaceae Bulb 16

7 Bromus carinatus Poaceae Perennial grass 77

8 Bromus diandrus Poaceae Annual grass 26

9 Bromus hordeaceus Poaceae Annual grass 39

10 Bromus madritensis Poaceae Annual grass 5

11 Bromus tectorum Poaceae Annual grass 67

12 Cardamine oligosperma Brassicaceae Spring forb 23

13 Castilleja attenuata Orobanchaceae Spring forb 12

14 Cerastium glomeratum Caryophyllaceae Spring forb 28

15 Cirsium occidentale Asteraceae Perennial forb 10

16 Clarkia purpurea Onagraceae Spring forb 27

17 Convolvulus arvensis Convolvulaceae Perennial forb 24

18 Cynosurus echinatus Poaceae Annual grass 32

19 Danthonia californica Poaceae Perennial grass 38

20 Daucus pusillus Apiaceae Summer forb 14

21 Dichelostemma capitatum Asparagaceae Bulb 13

22 Draba verna Brassicaceae Spring forb 48

23 Elymus glaucus Poaceae Perennial grass 80

24 Elymus multisetus Poaceae Perennial grass 6

25 Epilobium brachycarpum Onagraceae Summer forb 75

26 Eremocarpus setigerus Euphorbiaceae Summer forb 12
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Species ID Name Family Functional group Presence records

27 Eschscholzia californica Papaveraceae Perennial forb 32

28 Galium parisiense Rubiaceae Spring forb 4

29 Gastridium ventricosum Poaceae Annual grass 2

30 Geranium dissectum Geraniaceae Spring forb 18

31 Hemizonia congesta Asteraceae Spring forb 5

32 Hypochaeris glabra Asteraceae Summer forb 13

33 Leptosiphon bicolor Polemoniaceae Winter forb 21

34 Lotus micranthus Fabaceae Nitrogen-fixing forb 9

35 Lupinus bicolor Fabaceae Nitrogen-fixing forb 31

36 Madia gracilis Asteraceae Summer forb 53

37 Melanoplus devastator Acrididae Generalist herbivore 7

38 Micropus californicus Asteraceae Winter forb 13

39 Myosotis discolor Boraginaceae Summer forb 29

40 Navarretia divaricata Polemoniaceae Spring forb 14

41 Plagiobothrys nothofulvus Boraginaceae Spring forb 11

42 Platystemon californicus Papaveraceae Spring forb 14

43 Ranunculus occidentalis Ranunculaceae Perennial forb 55

44 Rumex acetosella Polygonaceae Perennial forb 44

45 Sanicula bipinnatifida Apiaceae Perennial forb 21

46 Sherardia arvensis Rubiaceae Winter forb 23

47 Stachys ajugoides Lamiaceae Perennial forb 2

48 Torilis arvensis Apiaceae Summer forb 25

49 Trichostema lanceolatum Lamiaceae Summer forb 10

50 Trifolium albopurpureum Fabaceae Nitrogen-fixing forb 8

51 Trifolium bifidum Fabaceae Nitrogen-fixing forb 10

52 Trifolium microcephalum Fabaceae Nitrogen-fixing forb 49

53 Trifolium willdenovii Fabaceae Nitrogen-fixing forb 25

54 Vulpia myuros Poaceae Annual grass 36
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Table S2: Climate variables at the Angelo Coast Range Reserve, California (39◦ 44′ 17.7′′

N, 123◦ 37′ 48.4′′ W).

Climate variable 2010 2050 Difference

Maximum temperature of the warmest month 27.56◦C 29.25◦C 1.69◦C

Minimum temperature of the coldest month 2.10◦C 3.23◦C 1.13◦C

Annual precipitation 2036.41mm 1939.02mm -97.39mm

Precipitation of the driest quarter 36.47mm 29.57mm -6.90mm

Mean temperature of the wettest quarter 8◦C 10◦C 2◦C

Temperature seasonality (standard deviation × 100) 444 468 22

Precipitation seasonality (coefficient of variation) 84 83 -1
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Table S3: Changes in average habitat suitability and geographical range between 2010 and
2050 for the 14 focal species using models with and without biotic interactions. Values
were calculated using Eqns S1, S2, S3 and S4 from Appendix S2 with prior and post(erior)
habitat suitability values. Larger positive values are suggestive of lower extinction risk
whereas larger negative values are suggestive of higher extinction risk. Highlighted cells
indicate when the model with biotic interactions predicts either a smaller increase or larger
decrease in average habitat suitability or geographical range than the comparable model
without biotic interactions.

Habitat suitability Inclusion threshold maxSSS threshold

Dispersal No dispersal Dispersal No dispersal

Species ID Prior Post Prior Post Prior Post Prior Post Prior Post

1 -10.8% -10.8% -18.2% -18.2% -19.3% -19.3% -5.8% -5.8% -31.1% -31.1%

2 -12.6% -17.1% -9.0% -7.4% -12.8% -11.7% -8.2% -12.6% -12.7% -17.6%

7 -29.5% -28.9% -38.4% -38.6% -38.4% -38.9% -35.7% -31.4% -36.7% -37.2%

9 -33.9% -30.3% -33.5% -31.9% -39.6% -37.5% -34.2% -25.0% -38.3% -29.2%

11 -67.3% -63.6% -72.8% -65.6% -74.3% -70.5% -86.6% -85.6% -89.0% -90.2%

19 -32.6% -23.3% -44.7% -38.4% -46.6% -40.3% -29.6% -11.4% -49.0% -32.4%

22 -53.3% -65.0% -53.3% -36.9% -57.4% -37.2% -80.1% -83.5% -87.0% -91.1%

23 -52.4% -48.0% -58.9% -56.6% -58.9% -56.6% -51.1% -50.2% -51.6% -51.0%

25 12.6% 17.7% -5.6% -5.9% -12.0% -6.2% 15.8% -5.9% -18.9% -32.6%

36 47.0% 25.0% 16.8% 12.4% -5.0% -5.4% 68.7% 33.7% -27.7% -19.8%

43 22.3% 80.9% 5.0% 4.0% -12.1% -13.1% 22.3% 17.6% -15.8% -16.7%

44 -70.6% -67.7% -68.9% -67.3% -69.2% -67.8% -81.2% -77.6% -81.5% -79.2%

52 -60.3% -57.3% -67.5% -62.3% -69.9% -64.3% -58.7% -64.7% -74.2% -78.4%

54 -23.3% -29.9% -24.8% -29.5% -31.3% -31.7% -31.1% -32.6% -34.9% -34.3%
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Figure S1: TSS scores for the 14 focal species without biotic interactions in SDMs.
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Figure S2: Increases and decreases in TSS scores for the 14 focal species when including
biotic interactions in SDMs.
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Figure S3: AUC scores for the 14 focal species without biotic interactions in SDMs.
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Figures S4–S17. How to interpret colours in the following species range maps.254

We considered species distribution model (SDM) outputs for the western USA at a resolution255

of ∼ 800m × 800m grid cells. The output of SDMs without biotic interactions and shared256

habitat suitability relationships is shown in bottom-left panels: habitat suitability values257

were transformed to a binary—green (�) = “present” and grey (�) = “absent”—species258

range using the maxSSS threshold and allowing for dispersal.259

The effect of including biotic interactions and shared habitat suitability relationships260

in SDMs for 2010 (“present day”) is highlighted in top-left panels: additional “present”261

locations are in yellow (�) and additional “absent” locations are in cyan (�).262

The effect of environmental change between 2010 and 2050 on species ranges predicted263

using SDMs without biotic interactions and shared habitat suitability relationships is high-264

lighted in bottom-right panels: lost geographical range is in magenta (�).265

The effect of environmental change between 2010 and 2050 on species ranges predicted266

using SDMs with biotic interactions and shared habitat suitability relationships is highlighted267

in top-right panels: compared to SDMs for 2050 without biotic interactions and shared habi-268

tat suitability relationships, additional “present” locations are in yellow (�) and additional269

“absent” locations are in cyan (�); and lost geographical range compared to SDMs for 2010270

with biotic interactions and shared habitat suitability relationships is in magenta (�), with271

“absent” locations that are predicted as being “present” using SDMs for 2050 without biotic272

interactions and shared habitat suitability relationships in blue (�).273

22



−130 −125 −120 −115 −110

35
40

45

Longitude

La
tit

ud
e

−130 −125 −120 −115 −110

35
40

45
Longitude

La
tit

ud
e

−130 −125 −120 −115 −110

35
40

45

Longitude

La
tit

ud
e

−130 −125 −120 −115 −110

35
40

45

Longitude

La
tit

ud
e

Figure S4: Predicted change in the geographical range of Achillea millefolium (perennial
forb, species ID 1) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S5: Predicted change in the geographical range of Aira caryophyllea (annual grass,
species ID 2) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S6: Predicted change in the geographical range of Bromus carinatus (annual grass,
species ID 7) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S7: Predicted change in the geographical range of Bromus hordeaceus (annual grass,
species ID 9) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S8: Predicted change in the geographical range of Bromus tectorum (annual grass,
species ID 11) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S9: Predicted change in the geographical range of Danthonia californica (perennial
grass, species ID 19) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S10: Predicted change in the geographical range of Draba verna (spring forb, species
ID 22) between 2010 (left) and 2050 (right) using SDMs with (top) and without (bottom)
biotic interactions and shared habitat suitability relationships. See Page 22 for a description
of the colour scheme.
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Figure S11: Predicted change in the geographical range of Elymus glaucus (perennial grass,
species ID 23) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S12: Predicted change in the geographical range of Epilobium brachycarpum (summer
forb, species ID 25) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S13: Predicted change in the geographical range of Madia gracilis (summer forb,
species ID 36) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S14: Predicted change in the geographical range of Ranunculus occidentalis (perennial
forb, species ID 43) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S15: Predicted change in the geographical range of Rumex acetosella (perennial forb,
species ID 44) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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Figure S16: Predicted change in the geographical range of Trifolium microcephalum
(nitrogen-fixing forb, species ID 52) between 2010 (left) and 2050 (right) using SDMs with
(top) and without (bottom) biotic interactions and shared habitat suitability relationships.
See Page 22 for a description of the colour scheme.
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Figure S17: Predicted change in the geographical range of Vulpia myuros (annual grass,
species ID 54) between 2010 (left) and 2050 (right) using SDMs with (top) and without
(bottom) biotic interactions and shared habitat suitability relationships. See Page 22 for a
description of the colour scheme.
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